Img preview " Development of a new Bio-Composite from renewable resources with improved thermal and fire resistance for manufacturing a truck internal part with high quality surface finishing "


Preparation and Characteristics of Biocomposites Based on Steam Exploded Sisal Fiber Modified with Amphipathic Epoxidized Soybean Oil Resin

Sisal fiber was pretreated by continuous screw extrusion steam explosion to prepare steam exploded sisal fiber (SESF) preforms. An amphipathic bio-based thermosetting resin with poor mechanical properties was cured by epoxidized soybean oil (ESO) and citric acid (CA). The obtained resin was used to modify SESF preforms and prepare eco-friendly biocomposites. The molar ratios (R) of carboxylic groups to epoxy groups and resin contents in biocomposites were adjusted. The biocomposites were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier-transfer infrared spectroscopy (FT-IR), tensile testing, scanning electron microscopy (SEM), water absorption and water contact angle measurements. The maximum thermal decomposition temperature of the biocomposites was 373.1 °C. The curing efficiency of the resin in the biocomposites improved with the increase of resin content, and reached a maximum at R = 1.2. The tensile strength of the biocomposites reached a maximum of 30.4 MPa at R = 1.2 and 40% resin content. SEM images showed excellent interfacial bonding and fracture mechanisms within the biocomposites. The biocomposites exhibited satisfactory water resistance. ESO resin cured with polybasic carboxylic acid is therefore a good bio-based modifier for lignocellulose, that prepare biocomposites with good mechanical properties, hydrophobicity, and thermostability, and which has a potential application in packaging.

» Author: Bo Lei

» Reference: doi: 10.3390/ma11091731

» Publication Date: 14/09/2018

» More Information

« Go to Technological Watch

This project has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° [605658].

AIMPLAS Instituto Tecnológico del Plástico
C/ Gustave Eiffel, 4 (València Parc Tecnològic) 46980 - PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40